
1 INTRODUCTION

The development of a probabilistic seismic perfor-
mance assessment framework for performance-based
earthquake engineering is underway at the Pacific
Earthquake Engineering Research (PEER) Center
head-quartered at the University of California at Ber-
keley (http://peer.berkeley.edu). The PEER frame-
work breaks down the formidable task of assessing
probabilistically the decision variables related to a
specific civil structure such as a building or a bridge
into the following four sub-tasks according to the
Total Probability Theorem of applied probability the-
ory. Examples of decision variables to be evaluated
probabilistically are: annual probability of exceeding
a given limit-state, annual probability of earthquake
damage exceeding a given dollar amount, or annual
probability of repair time (or down time) exceeding a
specified threshold. 
(1) Probabilistic Seismic Hazard Analysis (PSHA)

with the objective to compute for a given site the
annual probability of exceeding any particular
value of a specified ground motion intensity mea-
sure (IM). 

(2) Probabilistic Seismic Response Analysis Condi-
tional on IM with the objective to determine the

probability distribution of any pertinent engineer-
ing demand parameters (EDP’s) conditioned on
IM.

(3) Probabilistic Failure (or Damage) Analysis Con-
ditional on the EDP(’s) also called Fragility
Analysis with the objective to compute the proba-
bility of exceeding a specified physical damage-
state (or limit-state) given the EDP(’s).

(4) Probabilistic Analysis of Repair Cost and/or
Repair Time Conditional on Damage State with
the objective of determining the “annual” proba-
bility distribution of decision variables such as
repair cost and repair time for a given damage or
failure mechanism. 

1.1 Probabilistic seismic hazard analysis
In probabilistic seismic hazard analysis, the mean/
average annual rate/frequency (or Poisson rate),

, of exceeding a particular threshold value, z,
of a ground motion intensity measure, , is
obtained as (Cornell 1968):
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where  = number of causative faults;  = mean
annual rate/frequency of occurrence of earthquakes
with magnitudes greater than a lower-bound thresh-
old value, , on fault i. Functions  and 
denote the probability density functions (PDF) for
magnitude ( ) and site-to-source distance ( ),
respectively, given the occurrence of an earthquake
on fault i. The conditional probability of  exceed-
ing the threshold value z given  and 
corresponds to one minus the cumulative distribution
function (CDF) of the  attenuation (or predictive
relationship of  given seismological variables M
and R) (Abrahamson and Silva, 1997; Campbell,
1997).

1.2 Probabilistic seismic demand hazard analysis
The mean annual frequency, , of a given
structural response parameter (or engineering
demand parameter EDP) exceeding a specified
threshold value d is obtained by convolving the prob-
ability distribution of the EDP in question condi-
tioned on the seismological variables M and R and
the ground motion intensity measure IM,

, with the seismic hazard,
, as

(2)

where  denotes the conditional
probability density function of IM given M, R and
the occurrence of an earthquake along seismic fault i.
Assuming that the selected ground motion intensity
measure IM renders EDP conditionally independent,
given IM, of earthquake magnitude (M) and source-
to-site distance (R)1, i.e., 

, (3)

Eq. (2) simplifies to

(4)

1.3 Structural reliability analysis
The probabilistic assessment of a specific structure
requires the consideration of a number of potential
damage states. Here, a damage state is defined as a
particular stage of a specified failure mode (or failure
mechanism). Typically, these damage states are char-
acterized by mathematical damage-state or limit-state
functions of the form

(5)

where  and  denote the resistance/capacity and
load effect/demand, respectively, related to the k-th
damage state and  is the corresponding safety mar-
gin. The safety margin  is a random variable due to
(1) the uncertain capacity term  stemming from
the inherent randomness of material, mechanical and
geometric properties defining the structure, (2) the
modeling uncertainty associated with the capacity
term  and the limit-state function as a whole, (3)
the intrinsic variabilities of the demand term , and
(4) the intrinsic variabilities of the demand as a
whole beyond the demand term  used in formulat-
ing the limit-state function (i.e., missing demand
variables affecting the physical limit-state under con-
sideration). Traditionally, the above sources of uncer-
tainty (1), (2), and (4) are modeled and quantified
through the probability of exceeding the k-th dam-
age- or limit-state conditioned on the demand vari-
able , namely

(6)

The probabilistic analysis involved in evaluating the
above conditional probability of limit-state exceed-
ance is traditionally called fragility analysis. The
only way to assess capacity model uncertainty is to
compare model predictions with real-world observa-
tions, either in the field or in the laboratory, and to
perform statistical model assessment for example
using Bayesian statistical methods (Gardoni et al.
2002).

The mean annual frequency, , of exceeding
the k-th limit- or damage-state of a specific civil
structure is obtained by convolving the probability of
exceeding the k-th limit-state conditional on the
demand variable (EDP), , with the
demand hazard, , as

(7)

1.4 Probabilistic assessment of decision variables
The above probabilistic analysis can be extended to
the decision variables (DV’s) (e.g., life safety, down-
time, and dollar losses) related to a specific civil
structure. In order to do so, we first need to focus on
a specific prevalent damage/failure mechanism 
such as pier(s)/column(s) flexural and/or shear fail-
ure for a reinforced concrete bridge or a building, and
characterize the stage of formation of this damage
mechanism through a sequence of discrete damage
states2 defined by limit-state functions

. For example, we could have five
discrete levels of pier/column damage such as (Hose

1. This condition of “conditional independence, given IM,
of earthquake magnitude (M) and source-to-site distance
(R)” is called the “sufficiency condition” by Cornell et
al. (Luco and Cornell, 2003; Jalayer and Cornell, 2002). 
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sake of simplifying the problem through discretization. 
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and Seible, 1999): Level 1 = no visible damage char-
acterized by onset of barely visible cracks, Level 2 =
minor damage consisting of visible cracking due to
yielding of reinforcement, Level 3 = moderate dam-
age described by the onset of inelastic deformation
and concrete spalling (initiation of local mechanism),
Level 4 = major damage defined by large crack
widths (greater than 2 mm) and extensive spalling
(full development of local mechanism), and Level 5
= local failure/collapse characterized by large resid-
ual deformations such as buckling and rupture of
reinforcement and crushing of the concrete core,
accompanied by strength degradation. Thus, for the
specified damage mechanism , the mean annual
frequency, , of decision variable DV exceed-
ing a threshold level z is obtained by convolving (in
discrete form) the probability of DV exceeding level
z conditional on the k-th damage-state being reached
or exceeded but without the (k+1)-th damage-state
being reached, with the hazard of being between the
k-th and (k+1)-th damage-state, , as

(8)

The above must be repeated for each of the 
prevalent damage/failure mechanisms FMi, i = 1, ...,
NFM. The mean annual frequency, , of deci-
sion variable  exceeding a threshold level 
accounting for all  prevalent damage/failure
mechanisms (e.g., column failure, foundation failure,
abutment failure, superstructure failure, ...) will then
be obtained through combination of the individual
mean annual frequencies, ,
corresponding to the  failure mechanisms
accounting for their statistical dependency. In the ter-
minology of structural reliability (Ditlevsen and
Madsen, 1996), the problem of determining 
or  is a structural component reliabil-
ity problem, while the problem of finding  or

 is a system reliability problem. 

1.5 Research objectives
An issue of paramount importance in the PEER prob-
abilistic framework is the choice of the IM that can
be taken as either a scalar or a vector quantity. The
choice of IM has a profound impact on the simplify-
ing assumptions and methods that can be used to
evaluate accurately and efficiently the PEER hazard
integral, Eq. (8), which aggregates the results of the
four sub-tasks defined above, for families of civil
structures such as buildings and bridges. 

In the present study, the primary ground motion
intensity measure is taken as the 5 percent damped
elastic spectral acceleration, , at the
(initial) fundamental period T0 of the structure as
suggested by a significant body of previous work

(Kennedy et al., 1984; Sewell 1998; Shome et al.,
1998). This paper presents the results of a compre-
hensive parametric probabilistic/statistical study with
the objective to identify, within a class of existing
and newly defined ground motion intensity measures
IM, the optimum ones from the viewpoint of their
“efficiency” in reducing the dispersion, after condi-
tioning the seismic input records on Sa(T0) and IM,
of a variety of engineering demand parameters
(EDP’s) indicative of structural damage. The newly
defined ground motion intensity measures are based
on various features of the nonlinear seismic response
of generic nonlinear SDOF systems. In other words,
the objective here is to identify optimum post-elastic
ground motion intensity measures complementing

 which is a measure of peak elastic
structural response imposed by the ground motion on
the structure. 

2 GROUND MOTION DATABASE

The database used in this study consists of 1851
recordings from 157 earthquakes. These recordings
are from world-wide shallow crustal earthquakes
near active plate margins. Subduction and inter-plate
events are excluded. Event dates range from the 1935
Helena, Montana earthquake to the 1999, Chi-Chi,
Taiwan, and Kocaeli and Duzce, Turkey, earth-
quakes. Removed from the data set for this study
were low-amplitude recordings (peak horizontal
acceleration < 0.1g) and records with high-pass filter
frequency > 0.2 Hz or low-pass filter frequency < 10
Hz. These removals reduced the data set to 881
recordings, only horizontal ground motion compo-
nents (one or two per station), from 80 events. The
distribution of magnitude (M) and closest site-source
distance (R) parameters for the full data set is shown
in Figure 1. Most of the time histories used in this
study can be obtained from the PEER strong motion
database at the PEER website (http://peer.berke-
ley.edu). 

Seismological and site variables were compiled for
each recording in the database. These variables
include magnitude, site-source distance, focal mecha-
nism (i.e., reverse-slip vs. strike-slip), local site condi-
tion (i.e., soil site vs. rock site), and near-fault
directivity conditions (forward vs. neutral directivity).

Ground motion intensity measures were compiled
for each of the 881 recordings in the database. These
parameters include peak ordinates from time histo-
ries of horizontal shaking (PGA, PGV, PGD), Arias
intensity (AI), significant duration as derived from
Husid plot (5-95% normalized Arias intensity), mean
period (Tmean) as defined by Rathje et al. (1998), 5
percent damped elastic spectral pseudo-acceleration
for periods of T0 = 0.2, 0.5, 1.0, 2.0, 3.0 sec, and
average spectral acceleration between T0 and 2T0,
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. Figure 2 shows the 16-percentile,
median, mean, and 84-percentile elastic pseudo-
acceleration response spectra for the ensemble of 881
“qualified” earthquake records. The median spectrum
is used as target spectrum (or target primary ground
motion intensity measure). Thus, for each ground
motion time history, five different scaling factors are
determined to match the median spectral ordinates
for that time history to the five target Sa values at T0
= 0.2, 0.5, 1.0, 2.0, 3.0 sec. In order to avoid exces-
sive scaling, which can lead to unrealistic time histo-
ries, we discard time histories that require scaling
factors less than 0.30 or greater than 3.30 at any one
of the five spectral periods. Imposition of this condi-
tion reduces the 881 recordings in the data set (only
horizontal components) to 550 individual earthquake
time histories. 

3 STRUCTURAL MODELS, PARAMETERS AND
RESPONSE PARAMETERS

Only nonlinear inelastic SDOF systems are used as
structural models in this study. Three hysteretic mod-
els are considered, namely the bilinear inelastic,
Clough’s stiffness degrading, and slip models (Fig.
3). These inelastic SDOF dynamic systems are char-
acterized by the following system parameters: initial
period  [sec], damping ratio

, normalized strength
, and strain hardening ratio

, where m = mass, k0 = initial or pre-yield
stiffness, c = damping coefficient, Ry = yield
strength, g = acceleration of gravity, and kp = post-
yield stiffness. 

The equations of motion, energy balance equa-
tions and power balanced equations of the nonlinear
SDOF systems subjected to earthquake ground
motions are integrated using a piecewise linear exact
integration algorithm. Three types of response
parameters (or engineering demand parameters EDP)
are considered in this study. Response parameters of
the first type are based on the force-deformation
response of the system and include maximum dis-
placement ductility ( ), maxi-
mum normalized plastic deformation range
( , see Fig. 3, residual dis-

placement ductility ( ), cumulative

displacement ductility (
+1), number of positive/negative yield excursions,
number of yield reversals (Ny,rev). Response parame-
ters of the second type derive from the energy bal-
ance equation and include the normalized maximum
input energy over the duration td of the ground
motion record,

, (9)

and the normalized hysteretic energy dissipated over
the duration of the ground motion record, 

, (10)

where  denotes the yield displacement.
Response parameters of the third type are based on
the power balance equation and include the maxi-
mum rate of normalized earthquake input energy, 

, (11)

and the maximum rate of normalized hysteretic
energy dissipation,

, (12)
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Figure 1. Magnitude - closest distance distribution
of 881 “qualified” earthquake records. 
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Figure 2. Median, mean, 16-percentile, and 84-per-
centile pseudo-acceleration response spectra for
ensemble of 881 “qualified” earthquake records. 
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where a dot over a symbol denotes one differentiation
with respect to time. The last two response parame-
ters are indicative of how fast the earthquake input
energy is imparted to and dissipated by the structure
through both viscous damping and inelastic action. 

The nonlinear SDOF response parameters defined
above can be viewed as damage indices. They have
been computed for the three nonlinear SDOF systems
shown in Fig. 3 at the five initial periods T0 = 0.2,
0.5, 1.0, 2.0, 3.0 sec, for several values of the normal-
ized strength Cy, and for each of the 550 earthquake
records scaled to the median elastic spectrum shown
in Fig. 2. The results presented here all correspond to
a damping ratio of  and a strain hardening
ratio of  (i.e., elastic-perfectly plastic). 

Two types of response analysis were performed,
namely (1) forward/direct analysis, and (2) inverse/
iterative analysis. In a forward/direct analysis, the
nonlinear response parameters of a given nonlinear
SDOF system with specified structural parameters
(T0, ξ0, Ry, and α) are computed for a given earth-
quake ground motion record. In an inverse/iterative
analysis, the minimum strength level required (Cy =
Ry/(mg)) to limit a specified inelastic response
parameter to a given value is determined through an
iterative process. For example, constant-ductility
spectra, which represent very useful design tools, are
the product of an inverse analysis, consisting of
determining, for a given SDOF system, the minimum
strength level required, as measured by the yield
acceleration Ay (= Ry/m), to limit the maximum dis-
placement ductility μ of this system to a specified
value (e.g., μ = 2, 4, 6, 8). In this study, the targeted
response parameters considered are the maximum
displacement ductility (μ), the number of yield rever-
sals (Ny,rev), the normalized hysteretic energy dissi-
pated ( ), and the maximum rate of normalized
hysteretic energy dissipation, ( ). 

4 NONLINEAR SDOF-BASED GROUND 
MOTION INTENSITY MEASURES

In this study, particular attention is placed on nonlin-
ear SDOF-based ground motion intensity measures

which have the potential to complement effectively
the spectral acceleration, , at the
fundamental period of a structure (used as primary
ground motion intensity measure) in evaluating the
hazard integral, Eq. (8), for civil structures modeled
as nonlinear MDOF systems. A generic nonlinear
SDOF-based ground motion intensity measure is
defined as

(13)

where R denotes a nonlinear SDOF response parame-
ter (e.g., ductility μ, normalized hysteretic energy
dissipated , ...) of a generic nonlinear inelastic
SDOF system and r represents a specific/target value
of this inelastic response parameter (e.g., )
taken by the generic system when subjected to the
ground motion record considered. In this study, the
generic system is taken as the bilinear inelastic
SDOF system with zero strain hardening ratio, i.e.,
elastic-perfectly plastic SDOF system. Thus, 
is defined as the ratio of the minimum yield strength
required, , to limit the inelastic response
parameter R to r (when subjected to the ground
motion record considered) to the minimum yield
strength required for the system to remain elastic,

. Notice that  is smaller than or equal to
one, i.e.,

(14)

The closer  is to one, the more effective the
ground motion is in producing the target level r of the
nonlinear response parameter R in a structure. Of
particular interest in this study will be the cases
where the inelastic response parameter R is defined
as the maximum displacement ductility μ, the nor-
malized hysteretic energy dissipated , the number
of yield reversals , and the maximum rate of
normalized hysteretic energy dissipation .
Thus, , , , and , are measures of
the effectiveness of a ground motion record to pro-
duce a given level of displacement ductility, hyster-
etic energy dissipation, yield reversals, and
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maximum rate of hysteretic energy dissipation,
respectively, in a structure. From the normalized
equation of motion of a nonlinear SDOF system, it
can be shown that these new IM’s are independent of
the scaling of the ground motion and, therefore, are
relative intensity measures. These new IM’s allow to
quantify the effects of a ground motion record on an
inelastic system above and beyond its effects on peak
elastic response as measured by the elastic spectral
displacement or spectral acceleration at the initial
period of the system.

As an illustration of the results of the statistical
inverse analysis, Fig. 4 shows the histograms and
coefficient-of-variation (c.o.v.) of the yield strength
coefficient required, , for a maximum displace-
ment ductility response of μ = 2 and 8 in the case of a
bilinear SDOF system with parameters given in the
figure. The median value of , , is also given in
the figure for both cases. An example of results

obtained from the forward/direct analysis is given in
Fig. 5 which displays the histograms and coefficient
of variation (c.o.v.) of the maximum displacement
ductility response μ for the same inelastic SDOF sys-
tem as in Fig. 4 (with strength levels  and

). 

5 OPTIMUM POST-ELASTIC GROUND MOTION 
INTENSITY MEASURES

A parametric statistical study is performed to system-
atically analyze the statistics of nonlinear SDOF
response parameters and the statistical correlation
between nonlinear SDOF response parameters and
both seismological variables and ground motion
intensity measures. In contrast to other past and cur-
rent studies of this type (Riddell 1994, Shome et al.
1998, Miranda 1993, 2000), there is no a priori bin-
ning of the strong motion database, and multiple
inelastic SDOF response parameters are considered.
Again, in this study, the 5 percent damped elastic
spectral acceleration at the initial period of the SDOF
system, , is taken as the primary
ground motion intensity measure. Extensive statisti-
cal correlation analysis was performed between: (1)
nonlinear SDOF response parameters and seismolog-
ical variables, (2) nonlinear SDOF response parame-
ters and IM’s (both traditional and new), (3) different
nonlinear SDOF response parameters of the same
hysteretic model, and (4) a given nonlinear SDOF
response parameter for different hysteretic models.
The degree of correlation is measured by the sample
correlation coefficient ρ. One of the primary objec-
tives of these correlation studies was to determine
which traditional ground motion parameters correlate
best with inelastic SDOF response parameters indica-
tive of damage or, in other words, to identify the most
damaging features of earthquake ground motions.
Another primary objective was to investigate
whether the newly defined nonlinear SDOF-based
ground motion intensity measures correlate better
with various nonlinear SDOF response parameters
over a wide range of system parameters than tradi-
tional engineering ground motion parameters. As an
illustration of the correlation analysis, Fig. 6 displays
scatter diagrams (or correlograms) and correlation
coefficients (ρ) of nonlinear SDOF response parame-
ters and seismological variables and traditional IM’s.
These scatter diagrams are based on the set of 550
earthquake records scaled to the median spectrum
shown in Fig. 2. Illustrative scatter diagrams and cor-
relation coefficients of nonlinear SDOF response
parameters and two of the newly defined ground
motions intensity measures  and  are
shown in Fig. 7.   

An illustrative sample of the complete set of cor-
relation coefficients obtained in this study is repre-
sented graphically in Fig. 8 in the form of bar
diagrams. The correlation between the new IM’s

, , , and nonlinear

response parameters depends moderately on the tar-
get value x as shown in Fig. 9. Some of the signifi-
cant findings of this correlation analysis are:
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• As the initial period T0 increases, there are progres-
sively less pairs of significantly correlated tradi-
tional IM’s and inelastic SDOF response
parameters. None of the traditional IM’s correlates
well with all or even a majority of inelastic SDOF
response parameters consistently across all T0 val-
ues and strength levels considered. The correlation
between traditional IM’s and inelastic SDOF
response parameters is very much period depen-
dent. 
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• The best traditional IM’s in terms of correlation
with nonlinear response parameters are (1) the
average elastic spectral acceleration ,
which correlates fairly well with energy-based
response parameters and fairly well with deforma-
tion based response parameters for all T0 values
considered, and (2) PGV, which correlates well
with power based response parameters across all T0
values considered. 

• In general, the newly defined IM’s are better corre-
lated to the nonlinear SDOF response parameters
than the traditional IM’s. They achieve a more con-
sistent correlation across all periods and strength
levels for the three hysteretic structural models
considered. In particular, the new IM’s  and

 exhibit high correlation with a majority of
inelastic SDOF response parameters across all T0
values considered. 
Probabilistic conditioning with respect to the new

IM’s above and beyond the conditioning with respect
to the spectral acceleration at T0, ,
allows to further reduce the dispersion (scatter) of
nonlinear response parameters as illustrated in Fig.
10. Considering the desired attributes of optimum
ground motion intensity measures (i.e., their comple-
mentarity and therefore low correlation, their effi-
ciency in reducing the dispersion of a set of structural
response parameters) and based on the results of the
present study, the following two- and three-compo-
nent vectors of ground motion intensity measures

(i.e. vector-valued IM’s) are proposed: (1) { ,
}, (2) { , , }, and (3)

{ , , }. 
The proposed intensity measures have been vali-

dated at the nonlinear SDOF level, across several
hysteretic models, and remain to be validated at the
nonlinear MDOF level. 
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